
Journal of Engineering Mathematics 21: 363-377 (1987)
© Martinus Nijhoff Publishers, Dordrecht Printed in the Netherlands 363

Finite deformation analysis of a thin-walled tube sliding on a
rough rigid rod

A.D. KYDONIEFS' and A.J.M. SPENCER2'
'Department of Mathematics and Physics, School of Technology, University of Thessaloniki, Thessaloniki,
Greece; 2Department of Theoretical Mechanics, University of Nottingham, Nottingham NG7 2RD, England
(*author for correspondence)

Received 18 August 1987; accepted 1 September 1987)

Abstract. A thin-walled tube of finite length composed of a neo-Hookean material is sliding on a rough rigid rod
under the action of forces distributed on its leading edge. A perturbation method is used to determine the stress
and shape of the deformed tube to the second-order.

1. Introduction

The theory of large elastic deformations of membranes subject to normal surface tractions
is well established [1]. For the solution of various physical problems it is necessary to extend
the theory to the case where tangential as well as normal tractions are applied on one or both
the surfaces of the membrane. For the derivation of such an extended theory from the
three-dimensional equations of finite elasticity it is useful to have some information about
the behaviour of a thin sheet under the action of shear surface forces. As a preliminary to
the formulation of a general theory we consider the following special problem:

A thin, cylindrical elastic tube of circular cross-section, finite length L and inside radius
R0 in its undeformed state, slides slowly on a rod of radius r > R, at constant speed, under
the action of forces distributed on its leading edge. Its other edge, as well as its outside
surface are free of applied forces. Moreover, we assume that the rod exerts on the inside
surface of the tube a friction force which obeys the Coulomb friction law. The corresponding
mathematical problem considered is as follows:

The undeformed body is a right circular tube composed of an elastic material, of length
L, inside radius Ro and thickness H. The radius of the outside surface will be denoted by
R, = R + H. The deformed body is a solid of revolution, its inside surface being a
cylinder of radius r, and it is held in quasi-static equilibrium under the action of forces
distributed along one of its edges and on its inside surface. The other edge, as well as the
outside surface, are free from applied tractions. Sliding friction conditions apply at the inside
surface.

We refer both the deformed and undeformed body to the same cartesian axes OXYZ, OZ
being their common axis of symmetry, and assume that the material point of the deformed
body with cylindrical coordinates (r, 0, z) had, in the undeformed state, the coordinates
(R, O, Z) where

r = r(R,Z), 0 = 0, z = z(R,Z). (1.1)
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Fig. 1. Axial sections of the undeformed (a) and deformed (b) tube. Only the right half of the tube is shown.

Moreover, we assume that the undeformed body occupies the region R, < R R1 , 0 <
Z < L, while the inside surface of the deformed body is the cylinder r = r, 0 z < l.

We make use of some standard results from the theory of Finite Elasticity. For a proof
of formulae (1.2)-(1.7) the reader is referred to, for example, Spencer [2] the notation of
which we follow whenever possible.

From (1.1) we easily obtain the deformation gradient tensor

7 r/aR 0 ar/aZ

F* = 0 r/R 0 (1.2)

az/aR o az/az/

and hence the incompressibility condition

detF* -Or ( az ar a) detF* = R = Z a , (1.3)

and the left Cauchy-Green strain tensor

ar 2 O a) (OrOr a z ar az
(OR TZj OR AR A Z 

B* = F*(F*)T = O (R) 0 (1.4)

ar az ar az 0 z az 2

aR R Z oZ TR J Z 

We consider here the case of a neo-Hookean material which has stress-strain relations

T* = -pI + 2CB*, (1.5)
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where T* is the Cauchy stress referred to (r, 0, z) coordinates and p is an arbitrary pressure.
This relation and (1.4) give

0
2C OR0

o

ar az ar az
aR R aZ Z

0

ar z ar az
aR R aZ aZ

0

P+ aZ 2+ (OaZ2

2C aR(0 (az)

(1.6)

If we denote by

= T*/2C

the non-dimensional stress tensor and assume zero body forces the equations of equilibrium
can be expressed in the form

a Oz a az a(r, zrZ) a(r, z)
(rZ%) - (rZ,) - O____,OR - r aR a(R, ) rr) (R, Z) = 0,

(1.7)
- ( P ) = 0,

a Oz a Oz O(r, =zz)
R (rrrz) - - (rr) - + r (R Z 0.) OR OZ O a _ aR a(R, z)

where we have taken R, (E, Z as the independent variables. In the specified configuration we
also have the conditions

r(RO, Z) = r, z(&, 0) = 0. (1.8)

The outside surface of the deformed body has parametric equations r = r(R,, Z),
z = z(R,, Z), so that the direction ratios of the normal to this surface are (z/az, 0,
- Or/aZ)R=R,. The surface of the trailing edge has equations r = r(R, 0), z = z(R, 0) and
the direction ratios of its normal are (z/aR, O, -r/aR)z= 0 . Hence, because the surfaces
R = R, and Z = 0 are free of external forces, we have, respectively, the conditions

az ar az ar
, T Orr Zr = 0, Zrz, - Z = 0 at R = R,

az ar z ar T
Z- Rzr 0, -r -- z = 0 at Z = 0.aikR aR aRz aR

(1.9)

(1.10)

T* = 2C

365

2C R)6r

+ ( OZ I
TR 



366 A.D. Kydoniefs and A.J.M. Spencer

Finally, the Coulomb friction condition at the inside surface of the deformed cylinder is

T, = -kzrr at R = R0 , (1.11)

where the coefficient of sliding friction k is assumed to be constant. We also note the obvious
restriction

rr, < 0 at R = RO. (1.12)

2. Non-dimensional variables

We introduce the non-dimensional constants

A = rO/RO, = H/Ro, (2.1)

and the non-dimensional variables

R = R+ Ht, 0 < t < 1; Z = RC, O _ L/RO, (2.2)

r(R, Z) = Rou(t, ); z(R, Z) = Row(t, C). (2.3)

Then, the deformation gradient tensor, incompressibility condition, left Cauchy-Green
deformation tensor and non-dimensional stress tensor take, respectively, the forms:

1 au au
E O a U

F* = 0 0 (2.4)
1 +et

1 w aw
E t a

a(u,w) - 1, (2.5)
E(1 + t) a(t, C)

) d u ( au 2 1 auaw au w

£ t a + ) aluc } ° 2 T + -- 

B* = (I + t) (2.6)

1 auaw auaw 1 aw \ 2 (aW 2

0 2 aaw +
E2 Ot Ot + - 't J ay J
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P I (au 2

. = O

1 au aw au aw
E t t -O

P + E )

I u w au aw
2 at at a at

0 

PC 2

(2.7)

while the equilibrium equations become

a aw a aw
( (UTr) i - (UTrr) +

ap

a aw 0 aw
t (UTrz) - (UTz) +

a(U, ,rz) a(u, W)
u (t 99 = 0,

0(t, O) 0(t, --

(2.8)

(u, T:z)
u - 0.a(t, )

Finally, the conditions (1.8) and the boundary conditions (1.9)-(1.11) take the forms

u(0, ) = ,

w(O, ) = f (), f(O) = 0,

w rr au zr = 0 O, a rz - -zz = 0 at t=1,aa rr i zr -I T

, = -kTrr at t = 0,

aw au aw au
at T arr ua Tr = 0, e T -au T = O at C = 0,TH at r at at

where, for convenience, we have introduced the notation w(O, ) = f(C).

3. Series expansions. Preliminary result

For the problem, as stated, an analytic solution does not seem to be feasible. So, we try
a regular perturbation solution based on the assumption that the thickness H of the
undeformed body is much smaller than its inside radius R0 and that all the functions to be

(2.9)

(2.10)

(2.11)

(2.12)

(2.13)
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determined can be expanded in power series of

= H/Ro << 1. (3.1)

If e -* 0, R0 remaining constant, then r - r0 and z tends to a function of Z = Ro0 only.
Hence we seek the expansion in series

u(t, ) = + EU (t, ) + .. w.,, (t, ) (,) + (t, + 

p/2C = p(t, ) + ep, (t, ) + ... - . (3.2)

By substituting (3.2) in (2.7) we find that the components Tr, and rzz of the non-dimensional
stress tensor are

au aw , aW 2 U2 aW, au, fA + O(82),
-- at at a+ t at at at '

(aw\ 2 aw, aw2 aw, + 2) (3.3)
z= Po + (f,) 2 + J + (-pl + 2 + 2 + O(2) (3.3)at' + 2--- + o)

Similarly, a substitution of (3.2) in the boundary conditions (2.9) and (2.10) gives

u,(0, i) = 0, (3.4)

f(0) = 0, w(0, >) = 0, (3.5)

while from (3.2), (3.3) and (2.11)2 we obtain, to the second-order in 8,

au, 0 at t = 1. (3.6)
at at

From (3.2) and the incompressibility condition (2.5) we derive, to the zero-order,

aU'() = 1t

which, together with the boundary condition (3.4), gives

U(t, ) = (3.7)

The equilibrium equation (2.8)3, (3.2) and (3.3) give, to the zero-order,

a (au, aw,lj = 0
at , at t 0
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Hence, because of (3.6),

au, aw, l
at at

This result and (3.7) give w, = w,(C). It follows, because of (3.5)2, that w = 0.
We note that the result w, = 0 is independent of the existence or not of shear forces on

the inside surface. Hence it is valid for k > 0.

4. Series expansions

Now that we have the result w1 = 0, we start again with the expansions

u(t, ) = + ult,)+..., W(t,) + ... ) = f() + 2(t, ) ...

p(t, )/2C = po(t, a) + pl(t, ,) + ... . (4.1)

The above series and the incompressibility condition (2.5) give, to the zero- and first-order,
respectively,

au, au2 au,
i = , + (u,- t) a = 1, + ( t) O. (4.2)

If we use the notation

r(0) + ge 1) + E2 (2l)+ . . . (4.3)

for the non-dimensional stress tensor we derive, from (4.1) and (2.7), the formulae

rr) = -Po + ( 2 Trr au, au,
at + I at at 

TOy) = ° ()= , W + -O U2' lr
0, r at at a'

r(2) U2 f, + U2 W2 + W (4.4)
rz -t t -at a 

() = _Po + 2, T( = -p + 2(u -t),

° -= -Po + (f') 2 , 1.) = 

Tr9 = z,9 = 0,

369



370 A.D. Kydoniefs and A.J.M. Spencer

while (4.1) and (2.8) give the zero- and first-order equilibrium equations

= , P =o = (t, ),

(uau,
(Ul TO( + % (r)) - () = 0, p (t 

f (2 t uz , a(u r, z + a(u, ) ] 0. (4.6)at a(t, a(t, ) a(t, 5)

In the same way we obtain from (2.9)-(2.10) the conditions

u,(O, ) = u2 ) .. = 0,

f(O) = 0, W2 (0, ) = w3 (0, ) = ... = 0, (4.7)

and, from (2.11)-(2.13), the zero- and first-order boundary conditions

au,
°) = 0, f'T )- - z) = 0 at t =1,

kT) = 0 at t = 0,

au T() _ 2 T(O) = 0 au, T() = 0 at _ = 0; (4.8)atr at rr at ZZ

T) = 0, T2f'z _ O)- U2 ( = 0 at t = ,

T(,) + k4Tr = 0 at t = 0,

aw2 ) 3 (0) _ aur(2) =- aut t , ,

a +r-0 at tr = rz at(,

aU2 (0) I 0 (4.9)Ot ZZ at at W 0
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5. Solutions

From the zero-order incompressibility condition (4.2), and (4.7),, we derive

u, t (5.1)

By substituting this result in the first-order incompressibility condition (4.2)2 and using (4.7),
we obtain

-U2 t2. (5.2)
2,3(f')2

The zero-order equilibrium equation (4.5), and the boundary condition (4.8), give

r() O (5.3)

from which, because of (4.4), and (5.1), it follows that

Po = (Af') - 2. (5.4)

From the above results, (4.4) and the first-order equilibrium equation (4.6), we obtain

(a'l?) 1 au,at = A 1 _ p) at (5.5)at - ;t '

Hence, because of the boundary condition (4.9),,

z) t - (2 -_ po) (5.6)

The substitution of (4.4)2 in this expression for T() gives

(A2f' _ 1)2 , 4(f') 2 _ 1
P - ,4(f,) 3 t - (f,)3 ()

If we substitute the expressions for T(z) and zT() from (4.4) in the third second-order
equation (4.5)3 and use the above expressions for Po and u, we obtain

a2 w, A2 (f')4 + 2
at2 A2(f')4

from which, because of (4.7)3,

W2 222 (f,)4 2f"t2 + tA(C). (5.9)
2A2 (f,)4
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The integration function A () is determined from the second zero-order boundary condition
(4.8)2. A substitution in (5.9) gives

2t[22 (f') 4 + 3] -t2[2(f') 4 2]f,
-2 2A2(fl)4 f . (5.10)

Finally, from the first-order friction boundary condition (4.9)3 and the expressions for 42})

and T) wt derive

k[ 4 (f') 2 - 1](f') 2 (5.11)
2[22(f') 4 + 3]

The initial conditions which determine the required solution of this equation are

f(0) = 0, f'(0) = 1/1/2. (5.12)

The first of (5.12) is (4.7)2 and the second satisfies the boundary condition (4.8)s as well as
the requirement that f(C) is an increasing function of i for small . Equation (5.11) is a
first-order differential equation forf'(4) which can be integrated to give

i' = Q[lf'(~), k, 2]

r(f,) 2 + 322 1 + 3 o6 22 f' - 1 1 + 323
k 2Af3 2lf + 1 /2

2 +2 31 log22 i + f(O) = 0, (5.13)

where the boundary condition (5.12)2 has been satisfied. The change of variablef'(c) = in
(5.13) gives, in the usual way, the parametric representation of the solution to (5.11):

= Q( kA),fk d, ) , f() = ; . (5.14)

it follows that the solution to (5.11) is, in parametric form

I + JAr I + JAw -- l K

k () 2A' log + 1 ,1A 

+ 326 log 2 

()= .- Llo 2 1 
1 r2z - 1 1 + 36 4 2 _l1

f(t) = [ I;2 32 log z/ + , log 

From (5.11) we see that f'(C) is an increasing function of iff' > - 2 . We also have
f'(0) = 1// > /22 from (5.12)2. Hence f'() is a positive increasing function of C and

O T I ,,,/~ . (5.15)
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f'() 1// > A- 2. The justifies the conditions > 1/Ž /i in (5.14) and (5.15). It also
follows that f(C) is increasing and, from (5.1), (5.4) and (5.6), that z2r)(t, ) < 0 for
O < t < 1, Trr)(1, i) = O, as was to be expected from physical considerations.

The quantities u, u2, PO, Pi and w2 are determined, respectively, by (5.1), (5.2), (5.4) and
(5.9) in terms of the solutionf(~) given by (5.15). They satisfy, up to the first-orders in e, the
equations of equilibrium except the first-order equation (4.6)3 which involves zT2) and, hence,
w3. They also satisfy, up to the first-order, all the boundary conditions on the inside and
outside surface except (4.9)2 which, together with the equation (4.6)3 can be used to determine

-r2) if necessary. The assumption that no surface tractions are applied on the edge z = 0 is
satisfied to the zero-order.

A noteworthy feature of the solution is that the non-dimensional stress components Trr and
zr- are of order . This observation may provide the basis for a more general theory of
axisymmetric membranes with tangential tractions. We shall show below that, nevertheless,
the effect of tangential tractions on the deformation is very substantial.

The solution given above is valid for k > 0. For comparison we now consider the
frictionless case k = 0. As noted at the end of §3 the result w = 0 is still valid and if we
tentatively assume the same expansions (4.1) we again obtain the same formulae (4.2)-(4.9)
and (5.1)-(5.10) where (4.8)3 is identically satisfied and (4.9)3 is replaced by

z') = 0 at t = . (5.16)

From (4.4)4, the values of u,, w2 already determined and the above boundary condition we
derivef"(i) = 0 from which

f() = A(, (5.17)

where the conditionf(0) = 0 has been satisfied and A is a constant to be determined. From
(4.4)8, (5.4), (5.17) and the zero-order boundary condition (4.8)5 we obtain A = 1//i. It
follows that

U, = t/'U2, U2 2= ;2i: t WI =4
' 2

= 0,

_ p = 1)' A~ [k = 0. (5.18)
PO = I = 2( ii- 1)2 i -J

The above solution satisfies the equilibrium equations (4.5)-(4.6) except the first-order
equation (4.6)3 which involves w3. It also satisfies the boundary conditions on the inside and
outside surface to the first-order as well as the assumption that no tractions are applied on
the edge = 0 to the zero-order.

6. Numerical results

Some numerical results, in a non-dimensional form, are given in this paragraph. The
undeformed solid is assumed to be of length L = 6R, i.e., 0 < < 6.
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The non-dimensional length of the deformed tube is, to the second-order, w(t, 6) =
f(6) + 2W2 (t, 6), where w2(0, ) = 0. It follows that the non-dimensional length of the
contact surface is f(6) which can be obtained from (5.15), or (5.18) in the particular case
k = 0. Otherwise, since f'(C) is an increasing function of , one can use (5.13) and the
formula

f() = U'(,)- ,/4 Q ( , k, ) d. (6.1)

In Fig. 2, f(6) is plotted against , 1 < < 2, for nine values of the friction coefficient
k, 0 < k < 0.8. We note that a typical value of the coefficient of kinetic friction of rubber
on metal is k = 0.3. For constant the deformed length is an increasing function of k and,
for constant k > 0. 1, an increasing function of A, the steepest increase being for values of
) close to 1. For small values of k, say 0 k 0.1, f appears to be a decreasing function
of A.

It is easily seen that the total axial traction F applied on the surface i = constant of

f)

26

24

22

20

18

1 1

14

12

12

Fig. 2. The dependence off(6) on and k.
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the deformed body is given by the formula

F 22 (f') 4 - 1F4 = £F + 2F2 , F = (f) _
4rCRo 2 I2(f')

1
F2 - {(22f' - 1)2 + 2f'[A2Cf')4 _ 1] + 2[1 _ 24(f')2]}. (6.2)

For i = 6 the above formula gives the external force applied on the leading edge of the
sliding tube. In Fig. 3, the coefficient F. in the first-order approximation eF, is plotted against
A for eight different values of k. It is seen that F. is an increasing function of k for each value
of A and, for constant k, it is an increasing function of I, the increase being steeper for values
of i close to 1.

To second-order, the material lines which originally were straight lines in the er direction
deform to parabolas with slope

az/ar = Egl(t, C) + 2 g2 (t, C),

g1 (t, ) =k{2
2 (f')4 + 3 - t[ 2 (f') 4 + 2]}[ 4C(f')2 _ 1]

22f'[12(f')4 + 3]

(' 2 - )t
g2 (t, ) = -gl(t, ) ( 2f, t2f'

Fig. 3. The dependence of F, on and k.
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which can easily be calculated from (2.3), (5.1), (5.2) and (5.10). We observe that, to the
second-order, the slope is proportional to k. As already notedf'(i) is an increasing function
of i and f'(0) = I/1/ > 1/22. It follows that the slope and the coefficients g, (t, ), g2 (t, )
in (6.3) are decreasing functions of t, where g > 0 and g2 < 0. For the coefficient g (t, C)

of the leading term we have

24(f')2 - 1 24(f')2 -
g,(0, )/k 4 2f > g,(t, 4)/k >2 = g,(1, ). (6.4)i2f'n2 2f'[2 2 (f') 4 + 31

The extreme values g, (0, C)/k and g, (1, i)/k of g, (t, )/k are plotted against i in Fig. 4 for
four different values of A. The maximum value gl (0, )/k, attained at the surface of contact,
appears to be an increasing function of ( and for constant C, an increasing function of A. The
minimum value g, (1, )/k, obtained at the free surface is, for constant , an increasing

g9/k

1

0

9 (O.)/k A = 1.1

1ZRIC

9 (O,()/n

A = 1.4
9, (1 )/k

. I I I I I
0 1 2 3 4 5 6 ;

gl/k

2

1

91 (, S)/k

_ - - - - - - - - -__
I~ ~ ~ ~~~~~9(. I . -

pI I I I I 

9gl/k

4

3

2

1

A 2.0

- - - … …- - - -- 9. (I )/k

i I I - I -

0 1 2 3 4 5 6 5

Fig. 4. The dependence of g (O, )/k and g(I, )/k on for = 1.1, 1.4, 1.7, 2.0.
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A = 1.1 AX = 1.4 = 1.7

k=0.8

A = 2.0

Fig. 5. The dependence of u,(1, ) on for = 1.1, 1.4, 1.7, 2.0 and k = 0.1, 0.4, 0.8.

function of A. Upper bounds for the slope at t = 0 and t = 1 are easily derived:

(6.5)

We note that they are proportional to k and that the upper bound given for the slope at
t = 1 is independent of the length of the tube.

The non-dimensional "thickness" of the deformed tube is given by

u(, ) - = EU (1, ) + 2
2(1, ). (6.6)

Figure 5 shows the variation of u, (1, ) in terms of for 2 = 1.1, 1.4, 1.7, 2.0 and k = 0.1,
0.4, 0.8. u, (1, ) is a decreasing function of and for a given value of , C > 0, a decreasing
function of both and k. We note that the axial stretch f'(C) can be calculated from Fig. 5
sincef'() = l/lu(1, ) from (5.1).
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